mistralai/Mixtral-8x22B-Instruct-v0.1
POST {{baseUrl}}/chat/completions
Request Body
{"model"=>"mistralai/Mixtral-8x22B-Instruct-v0.1", "messages"=>[{"role"=>"system", "content"=>"You are a helpful assistant."}, {"role"=>"user", "content"=>"Write a program to load data from S3 with Ray and train using PyTorch."}], "temperature"=>0.7}
RESPONSES
status: OK
{"id":"mistralai/Mixtral-8x22B-Instruct-v0.1-486ed6ac-0ba2-4fbf-b16a-c8d090decb1d","object":"text_completion","created":1713671234,"model":"mistralai/Mixtral-8x22B-Instruct-v0.1","choices":[{"message":{"role":"assistant","content":" Sure, here is a basic example of how you might structure your program to load data from S3 using the `s3fs` library, and then use Ray for distributed training with PyTorch.\n\nFirst, you need to install the necessary libraries. You can do this using pip:\n\n```bash\npip install ray torch torchvision s3fs\n```\n\nHere is a basic structure of the program:\n\n```python\nimport s3fs\nimport torch\nimport torch.distributed as dist\nimport torch.multiprocessing as mp\nimport torch.nn as nn\nimport torch.optim as optim\nimport torchvision.transforms as transforms\nfrom torch.utils.data import DataLoader\nfrom torchvision.datasets import ImageFolder\nfrom torch.nn.parallel import DistributedDataParallel\n\nimport ray\nfrom ray.util.queue import Queue\nfrom ray.util.multiprocessing import Pool\n\nray.init()\n\n# Define your model\nclass SimpleModel(nn.Module):\n def __init__(self):\n super(SimpleModel, self).__init__()\n self.conv1 = nn.Conv2d(3, 6, 5)\n self.pool = nn.MaxPool2d(2, 2)\n self.conv2 = nn.Conv2d(6, 16, 5)\n self.fc1 = nn.Linear(16 * 5 * 5, 120)\n self.fc2 = nn.Linear(120, 84)\n self.fc3 = nn.Linear(84, 10)\n\n def forward(self, x):\n x = self.pool(F.relu(self.conv1(x)))\n x = self.pool(F.relu(self.conv2(x)))\n x = x.view(-1, 16 * 5 * 5)\n x = F.relu(self.fc1(x))\n x = F.relu(self.fc2(x))\n x = self.fc3(x)\n return x\n\ndef load_data(data_dir):\n fs = s3fs.S3FileSystem()\n transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])\n dataset = ImageFolder(data_dir, transform=transform)\n return dataset\n\ndef train(rank, world_size, data_queue):\n model = SimpleModel()\n optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)\n\n model = model.to(rank)\n model = DistributedDataParallel(model, device_ids=[rank], output_device=rank)\n\n for epoch in range(10):\n for data in data_queue.get():\n inputs, labels = data\n inputs, labels = inputs.to(rank), labels.to(rank)\n\n optimizer.zero_grad()\n outputs = model(inputs)\n loss = nn.functional.cross_entropy(outputs, labels)\n loss.backward()\n optimizer.step()\n\ndef main():\n world_size = 2 # Replace this with the number of GPUs you have\n data_dir = \"s3://my-bucket/my-data\" # Replace this with your S3 data directory\n\n dataset = load_data(data_dir)\n data_queue = Queue()\n\n for data in DataLoader(dataset, batch_size=32, shuffle=True):\n data_queue.put(data)\n\n mp.spawn(train, args=(world_size, data_queue), nprocs=world_size, join=True)\n\nif __name__ == \"__main__\":\n main()\n```\n\nThis is a very basic example and might need to be adjusted to fit your specific use case. It assumes that you have a directory structure in S3 that matches what is expected by `ImageFolder`. It also assumes that you have set up your environment for distributed data parallelism as outlined in the PyTorch documentation.\n\nPlease replace `s3://my-bucket/my-data` with your actual S3 path, and adjust the `world_size` variable to match the number of GPUs you have available.\n\nAlso, please note that this example does not include any data validation or error handling, so you might want to add that in a production setting.","tool_calls":null,"tool_call_id":null},"index":0,"finish_reason":"stop","logprobs":null}],"usage":{"prompt_tokens":28,"completion_tokens":1065,"total_tokens":1093}}