Train model (Anomaly)

POST {{baseUrl}}/api/:projectId/jobs/train/anomaly/:learnId

Take the output from a DSP block and train an anomaly detection model using K-means. Updates are streamed over the websocket API.

Request Body

{"axes"=>[{"value"=>"<Error: Too many levels of nesting to fake this schema>"}, {"value"=>"<Error: Too many levels of nesting to fake this schema>"}], "clusterCount"=>"<integer>", "minimumConfidenceRating"=>"<number>"}

HEADERS

KeyDatatypeRequiredDescription
Content-Typestring
Acceptstring

RESPONSES

status: OK

{&quot;id&quot;:{&quot;value&quot;:&quot;\u003cError: Too many levels of nesting to fake this schema\u003e&quot;}}